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ABSTRACT

Artificial neural networks were used successfully to sequence operations in a small,
recently modernized, supersonic wind tunnel at NASA-Lewis Research Center. The
neural nets generated correct estimates of shadowgraph patterns, pressure sensor readings
and mach numbers for conditions occurring shortly after startup and extending to fully
developed flow. Artificial neural networks were trained and tested for estimating: sensor
readings from shadowgraph patterns, shadowgraph patterns from shadowgraph patterns
and sensor readings from sensor readings. The 3.81 by 10 in. (0.0968 by 0.254 m) tunnel
was operated with its mach 2.0 nozzle, and shadowgraph was recorded near the nozzle
exit. These results support the thesis that artificial neural networks can be combined with

current workstation technology to automate wind tunnel operations.
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INTRODUCTION

Automation of wind tunnel operations using artificial neural networks has
been tested in a 3.81 by 10 in. (0.0968 by 0.254 m)
subsonic/transonic/supersonic wind tunnel at NASA-Lewis Research Center. A
possible approach to automation, which uses operator-trained, workstation-
resident, software neural nets as sequencers, was reported previously by the
authors.'? One of the reports discussed the use-of archival flow visualization
records from the Lewis tunnel to train the neural networks.! This paper will
discuss the performance of neural net sequencers which were trained and tested
on recent runs of the wind tunnel with its mach 2 nozzle and will indicate why
and where said sequencers should be useful. Briefly stated, a sequencer
estimates for a wind tunnel the next appropriate control settings, flow
visualization patterns, or sensor values from the current control settings, flow
visualization patterns, or sensor values. A distributed or programmable logic
control system® can then use these estimates to set the next appropriate state of
the tunnel without human intervention.

The authors reported previously that neural net sequencers performed
poorly for some subsonic/transonic/supersonic cascade configurations.> Recent
results using the small tunnel’s mach 2 nozzle, by contrast, have been fair to
very good in selected flow regions. This improvement is attributed to: a more
repeatable, cleaner flow visualization setup, better tunnel sidewall stability and
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the increased experience of the tunnel operator in preparing training sets for
neural net sequencers. Hence, the results reported herein refer to the mach 2
configuration only.

There are several motives for considering the automation of wind tunnel
operations using neural nets in particular. First, neural net sequencers can
replace personnel whose job is to execute routine sequences of actions during
tunnel start-up and operation. A major reason for using human operators for
some routine tasks is that those tasks require the interpretation of patterns such
as flow visualization. Neural nets perform these interpretations quite effectively
as will be demonstrated. Second, neural nets can assure the quality of
operations. The nets can be trained with the actual examples of the most expert
personnel, as reported in this paper, or with model generated data. Experimental
protocols and wind tunnel characteristics can be interfaced efficiently. Third,
neural nets are a tool for managing and monitoring the operation of a wind
tunnel. Neural nets measure the utilization, effectiveness, and consistency of
performance of all inputs including: personnel, instrumentation, flow
conditioning, operations methods and services. An input is easily removed from
a training set, or added to a training set, for evaluation of its necessity or
effectiveness. Fourth, neural nets can provide continuous monitoring of the
health of the wind tunnel. The neural nets will estimate both the current and the
next flow visualization or sensor values. Significant deviations from the actual
flow visualization and sensor values can be detected. Finally, neural nets are an
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effective way to use increasingly powerful workstations. The neural nets--
resident in the SGI Crimson workstation used for the work discussed herein--
process more than 300 flow visualization records per second.2 Hence, 10 to
100 nets could be used to process different groups of sensors, flow visualization
pictures, and valve settings, even if the tunnel state were changed as often as
once per second. Software is also under development to allow the workstation to
communicate control settings to the tunnel’s distributed or programmable logic
control system.?

Automation of wind tunnel operations is targeted toward three classes of
tunnels. Development and experimentation are being done in a wind tunnel
described in this paper. That tunnel has many of the features of the larger
tunnels at Lewis Research Center, but its small size makes it an affordable,
practical place for testing automation technology. A second targeted class is the
collection of existing large wind tunnels. A practical problem here is that neural
nets are trained by example. A tunnel must be run to generate the examples, and
the cost effectiveness of that approach is questionable. Hence, the effective
application of automation to this target probably will require identification of
one or more of the following situations: operations which use pattern
identification or visualization and occur commonly for many different kinds of
tests; other kinds of operations that are executed frequently and repeatedly; and
situations where models of tunnel operations exist and can be used to supplement
limited data. The massive parallel processing
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capabilities of neural nets can also be supplemented and augmented to some
extent with the rule insertion capabilities of expert systems, fuzzy control, or
simple programming logic. Finally, new wind tunnels are targets for automation,
if their designs can be constrained to use fully the automation capabilities of
artificial neural networks and other artificial intelligence technologies as well as
the inputs (particularly flow visualization) that those technologies require.

The results in this paper provide evidence to support two of the
motivations for using artificial neural networks for automating wind tunnel
operations including: the efficient, accurate interpretation of pattern data as
exemplified by flow visualization patterns; and the concept of training a neural
network with an expert’s examples. First the wind tunnel, the shadowgraph flow
visualization system, the workstation, the neural-net sequencers, the data
handling system and the control system are described. Next, the experimental
procedures are explained where image-to-sensor, image-to-image, and sensor-to-
sensor neural-net sequencers are trained and tested. Then, the results are
discussed, and the ranges for good and poor performance are presented and
explained.

MODERNIZED WIND TUNNEL--FOR AUTOMATION
The wind tunnel used to generate the training sets for the neural-net
sequencers was actually an upgrade of the first supersonic wind tunnel operated
at Lewis Research Center (circa 1946).* The original tunnel, Fig. 1, was
essentially an 8 ft (2.44 m) long, 4 by 10 in. (0.102 by 0.254 m) rectangular
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duct connected to a central air (C.A.) supply via a 12 in. (0.305 m) diameter
valve and to an altitude exhaust system via a diffuser and a 42 in. (1.07 m)
diameter exhaust valve. The tunnel has been upgraded many times since 1946.
Recently, the tunnel was modernized to have many of the same systems as are
used to control the operations of large wind tunnels. The tunnel is now suitable
as a multi-user platform for testing instrumentation and components as well as
developing parallel processing and control strategies. A neural-net experiment,
performed with a cascade configuration of the tunnel, has been reported.? The
modern mach 2 configuration used to generate the training sets for this paper is
shown in Fig. 2. This configuration was upgraded considerably in the last two
years, as shown in Fig. 3, to provide heated, filtered, inlet air with variable flow
conditioning, boundary layer bleeds, and dynamic shock positioning and shape
control up to 100 Hz. The modern tunnel’s inlet supply also has several
additional 8 in. (0.203 m) diameter valves, and the tunnel’s exhaust system has
an additional 8 in. (0.203 m) diameter bypass valve.

The specific components of the tunnel needed to interpret the
experimental procedure and results discussed in this paper are shown in the
highly simplified diagram of Fig. 4. Flow is essentially controlled through the
combustion air valves AC-2408 A and AC-2408 B. The groups of boundary
layer bleed and exhaust valves were preset for training set generation. In fact,
any serious attempt at complete automation would need to recognize that the
tunnel, as shown in Fig. 3, uses more than 60 valves.
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Flow visualization was acquired through a pair of 47 in. (1.19 m) long
windows. The shadowgraph field for this work was actually centered near the
right edges of the windows 40 in (1.02 m) downstream of the nozzle throat or
approximately 2 in. (0.05 m) downstream of the nozzle exit. The positional
stability and repeatability of the one-pass shadowgraph and the tunnel wall were
assured to within 0.002 in. (0.005 cm) using a hard mounted system with taper
dowel pins. The shadowgraph carriage can be relocated within this accuracy
along the entire length of the tunnel. The neural nets require this relocation
accuracy as has been reported.”> The actual shadowgraph field recorded was
about 10 by 8.5 in. (0.25 by 0.21 m). A sample image is inserted in Fig. 4 for
reference.

Figure 4 shows only three of many sensors. The static inlet or plenum
pressure is indicated by P,, and a static test section pressure located 0.5 in.
(1.27 cm) downstream of the nozzle exit is indicated by P;. The mach number
probe MN; was located 48 in. (1.22 m) aft of the nozzle throat or about 8 in.
(02 m) downstream of the nozzle exit, just downstream of the developing test
rhombus. The pressure sensors are, in fact, part of a 186 channel electronically
sensed pressure system with an accuracy of +0.033 psi (2228 pascal).
Considerably greater pressure fluctuations than the accuracy are induced at times
by the upstream or downstream hardware; the time averages of these fluctuations
rather than the accuracy of the transducers determine the tunnel operator’s

responses and neural-net training sets.



Tunnel information is handled, and control is exercised, with the systems

to be described in the next section.
TUNNEL INFORMATION HANDLING AND CONTROL

The subsystems used to acquire, handle and process information on the
state of the tunnel as well as exercise control of the wind tunnel are outlined in
Fig. 5. The SGI Crimson XS24 workstation is a key element and is
representative of the growing computer technology that makes this study
relevant. The workstation has 256 megabytes of random access memory for
compilation and high speed execution of the neural net algorithms as well as
four VME slots, two SCSI buses, an Ethernet connection, and four serial ports
for communications. The VME slots, Ethernet connection, and serial ports are
used to acquire and change the state of the tunnel. All flow visualization
patterns enter the computer via a VME mounted, color video frame grabber.’
The frame grabber supports a va.riefy of television and image formats, but the
shadowgraph patterns discussed herein were acquired with a NTSC, 646 X 486
pixel, black-and-white CCD camera.® This camera operates at 30 frames per
second with two fields per frame; hence unsteady flow visualization patterns are
time averaged and may change from one field to the next. At this stage, all
sensor and control data (pressures, temperatures, valve settings, and mach
numbers) are acquired by Lewis’s ESCORT D central data acquisition system.
The data is transmitted in a few seconds to the workstation’s Ethernet connector,
via a local area network, in the form of possibly more than 800 ascii encoded
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sensor and control values. Fast acquisition of sensor values and transmission of
control information require direct communications with the facility’s MODICON
programmable logic control system.> A software package is being developed to
implement direct communications with MODICON through the workstation’s
serial ports. A noteworthy point is that the workstation is intended eventually to
be used as a slave module in the control system. Image handling, massive
parallel processing, and neural-net decision making will be done in the
workstation, but the results will be filed for use at the convenience of the control
system. This approach makes it easier to interface automation to existing
protocols and distributed control systems in wind tunnels and other facilities.

A commercial package was used to create the workstation’s artificial
neural networks.” This package contains versions of a large number of neural
net paradigms, but the work discussed herein used only the feedforward neural
networks (exemplified by Fig. 6), Fuzzy ARTMAP, and the modular neural
network.

At this point, the authors wish to emphasize that successful automation of
wind tunnel operations depends strongly on a practical, personal, competent
knowledge of the wind tunnel, its instrumentation, and its controls and only very
weakly on a knowledge of neural network technology. An extensive discussion
of the theory and practice of neural networks is beyond the scope of this paper
and is not especially necessary or helpful. There is an extensive literature
discussing artificial neural networks including books®® as well as tutorials and
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workshops.

Speaking very briefly, an artificial neural network as depicted in Fig. 6 is
a collection of interconnected nonlinear processing elements or nodes. ( Figure 6
shows full connections for only one input node and one output node.) The
connections between nodes typically are weighted; the network typically has
vectors or arrays of inputs and outputs. The program or mapping between inputs
and outputs typically is encoded in the connection weights. The algorithm for
adjusting the weights to achieve a desired mapping of inputs onto outputs is
called a training algorithm. Biological allusions such as "neural net" and
"training" originated in the weak similarities of some artificial neural networks to
the living variety. For those allusions, connection weights are associated with
the strengths of electrochemical synapses; nodes are associated with neurons; and
the output connections of nodes are associated with axons. Such semantics have
no direct application in this paper.

As explained, the objective of this work was to train or program a neural
network or system of neural networks to estimate the next desired state of the
wind tunnel from its current state. The inputs to the neural networks then
consisted of vectors of pixel values from the CCD camera, pressure sensor
readings, mach numbers, and valve settings. The outputs consisted of exactly
the same kinds of information, but represented the next operating state of the
wind tunnel. The expert operator generated a representative training set of input-
vector, output-vector pairs during a run; that is, the operator developed a training
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set by example. Said training pairs must cover the space of likely tunnel states
or transitions between states for successful training.

We considered among the following factors in selecting neural net
software packages and paradigms for learning the training sets. The first
considerations were convenience and cost: we used commercially available,
menu driven packages to avoid incurring software writing costs. The
commercial package used for the work reported herein’ provided menu driven
control of all processes including: training set selection, test set selection, net
selection, net creation, net training, net testing, monitoring of net performance,
and C language encoding of the trained net. The package allowed the creation
of nets containing up to 20,000 nodes or neurons. A second consideration was
the ability of a net to generalize or to extrapolate and interpolate given the
discrete examples of the training set. Possible additional considerations were the
training time and the recall time or response time of the trained net.

The feedforward net depicted in Fig. 6 is a common example of neural
networks; feedforward nets were used to generate most of the results in this
paper. The nodes for the net of Fig. 6 are arranged in three layers. The lowest
layer or input layer in this example contains 3,648 inputs to receive the pixel
values from 57 X 64 pixel shadowgraph images. (The 8 bit pixel values must
actually be normalized between 0 and 1.) The second layer, containing 16
nodes, is called a hidden layer. Each node in the hidden layer is connected to
every node in the input layer via weighted connections . Each node in the

11.



hidden layer also has a bias input not shown. The weighted inputs are generally
summed by the hidden layer node, and the sum is transformed using a nonlinear
function. The transformed sum is then applied to the output of the node, and the
output is fanned out to the highest layer or output layer. Each node in the
output layer performs similar processing. The output layer also contains 3,648
nodes corresponding to a 57 X 64 pixel output image. The output image might
be the next image in a sequence of images associated with a sequence of tunnel
states. Training is an iterative process where input images are applied to the
inputs; output images are generated and compared with the training image; and
the weights are adjusted. There are many kinds and variations of training
algorithms; the reader is referred to the references for discussions.

Nets such as that shown in Fig. 6 currently require a workstation
environment. The menu driven version of the trained net occupies 5 to 6
megabytes of storage. The C language code with comments for the trained net
also occupies 5 to 6 megabytes. The compiled code and calling program
occupy 3 to 4 megabytes. But, compilation requires more than half of the 256
megabyte random access memory. Execution speed is more than adequate. One
compiled net was measured to process more than 300 images per second where
the images were 60 X 60 pixels and where there were 7 output nodes for 7
sensor values.

The tunnel operator currently operates the tunnel with manual controls
while monitoring the sensor values and flow visualization. There are more than
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60 valves as has been mentioned, and most are not operated during a run.
Many are preset during the tunnel’s initial tuning phase to provide proper
boundary layer bleed conditions. The major concern during operation of the
tunnel for any purpose, including training set generation, is the integrity of the
two one-of-a-kind optical windows shown as the longer windows in Fig. 2.
Pressure changes are not permitted to exceed 3 to 6 psi (20 to 40 kilopascals)
per minute. The major consequence of this requirement is that operations are
performed slowly, and even the local area network is fast enough for the neural-
net experiments. The actual experimental procedure is described next.
EXPERIMENTAL PROCEDURE

The experimental procedure includes training set acquisition, training set
preprocessing, neural net training, and neural net testing. Training set acquisition
consists of recording the sequence of tunnel states leading to a particular state
such as fully developed flow. The objective is to select exactly those sensor
readings, control settings and flow visualization patterns that the operator refers
to in setting the tunnel state. Some combinations of those sensor readings,
control settings, and visualization patterns are then used to construct the input
and output vectors for the neural networks.

The actual procedure for training set acquisition was more poorly defined.
The operator was forced to learn by trial and error a procedure for mach 2
operation of the modernized tunnel, and sequences varied significantly from one
run to the next. The stability of the flow varied greatly from start-up to fully
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developed flow. Pressure fluctuations more than 1 psi (7 kilopascal) were
encountered at times. Some flow regions produced very stable shadowgraph
patterns; other flow regions produced time averaged patterns. The ESCORT D
data dumps displayed all the sensor values, but contained only snapshots of
possibly fluctuating data. The central air handling services for the tunnel were
shared by a large number of facilities; the tunnel did not have a good system for
regulation. Hence, the sensor values for a given flow visualization pattern often
varied from day to day, hour to hour, or even minute to minute.

This section will discuss the procedures for training set development from
two runs. For one run, the operator viewed certain pressure sensor readings,
valve settings, and mach numbers, and set the next values of the same, to
generate the training sequences. For the second run, the operator viewed only
the shadowgraph patterns to generate shadowgraph-to-shadowgraph sequences.
The two kinds of runs in fact were performed in different months.

For this paper, neural networks were trained with the sensor readings and
shadowgraph patterns from the second (visualization controlled) run; the
accuracy of training was measured; and the trained nets were tested against the
first (sensor controlled) run. The procedures for performing the sensor and
visualization controlled runs of the tunnel and acquiring the training data are
discussed next.

The following procedure was adopted to protect the optical windows and
acquire the training data. The test section was evacuated through the boundary
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layer bleeds from ambient pressure to a pressure of 2.0 psia (13.8 kilopascal).
The sidewall, roof, floor, and pre-throat bleeds were opened in the stated order to
control the evacuation rate to 3 to 6 psi (20 to 40 kilopascal) per minute to
protect the windows. Several minutes were then needed for automatic calibration
of the data acquisition system and the recording of baseline shadowgraph. For
the sensor controlled run, the inlet or plenum pressure P, was increased in
approximately 1 psi (6.9 kilopascal) increments. Shadowgraph and a data dump
were recorded after each increment. Approximately 20 minutes were required
to teach a final plenum pressure of about 35 psia (241 kilopascal). A similar,
but reversed, schedule was followed for shutdown. The operator was able to
perform the visualization controlled run by remembering and distinguishing
changes in the sequence of shadowgraph patterns corresponding to approximately
1 psi (6.9 kilopascal) increments. The valves were operated to change from one
pattern to the next. Shadowgraph and a data dump were recorded for each
pattern in the sequence.

As stated, all training reported in this paper was accomplished with the
visualization controlled run even though the operator did not use the sensor data
to control that run. Part of a sequence of shadowgraph images from the
visualization controlled run is shown in Fig. 7. The top row in that figure
shows 646 X 486 pixel images. The flow is from right to left. The
shadowgraph fields occupy only part of the images. The images were prepared
for training first by cropping them to 340 X 302 pixels to show only the
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shadowgraph fields. The resolution was then reduced to 64 X 57 pixels for
handling by the neural net software, and the images were converted to binary
format. These operations were accomplished using standard SGI image
processing commands. An image-to-image training set was then constructed
simply by combining adjacent shadowgraph patterns in the sequence as input-
output pairs. The actual format depends somewhat on the protocols of the
commercial neural net package and on the neural net type. A feedforward net,
for example, requires that the input pixels, whose values can be between 0 and
255, be normalized between 0 and 1. For this paper, all pixels were
normalized for the full range of 0 to 255 . An alternative is to note the actual
range of values exhibited by each individual pixel in the full training set. The
pixels are then individually normalized for their particular ranges. Individuai
pixel normalization was very sensitive to time varying illumination effects as
well as time varying window patterns and was not effective. The output pixel
values were normalized between 0.2 and 0.8 to accommodate the node
nonlinear transfer function (a sigmoidal function).

Training set preparation using the pressure sensors, mach numbers and
valve settings was more difficult. Shadowgraph patterns were definitive; but as
mentioned earlier, pressures, downstream mach numbers and supply-air valve
settings depended on the other users and the configuration of the air handling
system. The valves have nonlinear hysteresis effects. Hence, a mapping
between a particular shadowgraph pattern and corresponding pressure settings,
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mach numbers and valve settings is not definite. It is necessary to look for
invariants. The results reported herein are based as in Fig. 4 on: the inlet
pressure P, one test section pressure P, and the downstream mach number
MN, . The input or output vector actually has the form: [P, (MN;)* Pl .
The performances of the nets using Py or MN; separately were very poor for
the reasons mentioned. The performances, using the product (MN,)? P,
forming the second component of the vector, were fair to good as will be seen.
The sensor values listed here are a small fraction of the total number available.
But P, P, and MN; were interrogated often by the tunnel operator, and were
therefore relevant to the objective to train by example.

Adjacent vectors in the operations sequence were then combined to form
the sensor-to-sensor training sets. Again, the training sets reported in this paper
were derived from the image (shadowgraph) controlled run. The operator could
not see or examine the sensor values while performing that run; the sensor
values were recovered from the data dumps later. The pressure range for
normalizing P, is 0 to 50 psi (0 to 345 kilopascal), and the range for
normalizing (MN,)* Py is 0 to 24 psi (0 to 165 kilopascal).

An image-to-sensor sequencer is also discussed herein. For training, the
64 X 57 pixel images were used as inputs. The outputs consisted of the current
sensor pair and the next sensor pair in the sequence, where a sensor pair is the
vector defined two paragraphs above.

The neural net for the image-to-image sequencer was essentially that
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shown in Fig. 6 with 3648 input nodes, 16 hidden nodes, and 3648 output
nodes. A modified back propagation algorithm was used for training. Good
training requires about 3000 iterations per training record. A training record is
one of the input-output image pairs.

The neural net for the sensor-to-sensor sequencer was a feedforward net
with 2 input nodes, 6 hidden nodes, and 2 output nodes. The image-to-
sensor net had 3648 input nodes, 16 hidden nodes, and 4 output nodes.

The neural nets were tested first against their training sets and then
against test sets from the sensor controlled run acquired a month earlier. Test
sets are formatted exactly the same as training sets.

The runs were divided somewhat arbitrarily into three regions for this
exercise. Start-up involved unstable normal shock-train patterns. The transition
region showed stable shock patterns whose shapes and positions varied
significantly as the flow was changed to a fully developed flow in the test
rhombus. The fully developed region contained stable shock patterns that
changed only slowly as the inlet pressure was increased significantly. Nets were
trained with training sets developed from all three regions, but most training
records originated from the transition region.

RESULTS AND DISCUSSION

The neural nets outlined in the previous section were trained with records
from the image (shadowgraph) controlled run and tested with records from the
sensor controlled run. The results from that training and testing are presented in
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this section.

In fact, a large number of nets were trained and tested on various runs
during a period of about a year. Most of these runs indicated the need to solve
problems such as assuring the accuracy of alignment of the flow visualization
system? or responding to the effects of random changes in the central air
handling system. No two run sequences were identical, because of varying
demands on the central air handling system, which makes it difficult to compare
runs. However, the operator had developed a consistent, personal protocol for
bringing up the tunnel for the two runs to be compared. There was no
constraining model which forced the operator to perform identically during the
two runs. Identical performances would be fortuitous; since the operator looked
at pressure sensors for the sensor controlled run and shadowgraph for the image
controlled run. The two runs are compared by looking for state-to-state
transitions that overlap in the two runs as will be explained.

Tables I and I list the output records for training and testing,
respectively, the image-to-sensor net; the inputs are the corresponding 64 X 57
pixel shadowgraph images. Table I lists the sensor values for an 11 record
training set from the image (shadowgraph) controlled run. Each output record
contains an arbitrary state number, the current sensor values, and the next sensor
values for that state. The sensor values again are the inlet or plenum pressure
P, and the grouping (MN,)? P, which contains the downstream mach number
MN, and the test section pressure Pg . The ratio r of these quantities is also
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listed for quick reference. That ratio is an approximate invariant, and can be
used to identify where the current-to-next tunnel-state transitions overlap. This
feature is important; since the actual sensor values for a given shadowgraph
pattern depended on the configuration of the central air handling system and its
users.

Table II lists the sensor values for a 12 record test set from the earlier
sensor controlled run. The format of Table II is the same as the format of
Table 1.

Figure 8 shows the performance of the image-to-sensor net in predicting
the current sensor values. The top row of that figure shows the response of the
net to the training set, and the bottom row shows the response of the net to the
test set. The solid lines in the plots are the data-dump sensor values, and the
solid dots are the net generated sensor values. The net is seen to generate the
training values well (upper row of Fig. 8 ), but is seen to generate the test values
well only in the middle regions of the lower-row plots.

Figure 9 has the same form as Fig. 8, but shows the next sensor values
in sequence rather than the current sensor values for a state. This plot is more
appropriate for predicting the control potential of the net.

There are no identical transitions in Tables I and II; however there is
overlap in both the transitions between ratios and the trend in those transitions
beginning at about state 4 in Table Il.  The net generates the test values well
beginning at about this state. Lack of overlap is not the only factor in
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explaining the poorer performance at the lower pressures (smaller state numbers).
Flow fluctuations are large at the lower pressures due to disturbances caused by
partly open control valves. The shockwave jitter is as much as + 1/4 in.

(£ 6 mm) at lower pressures. The input shadowgraph patterns are time-averaged
by the NTSC camera and differ between fields of a frame. Definitive control is
difficult when the plenum pressure P, is less than about 9 psia (62 kilopascal).

Plenum pressures greater than about 19 psia (131 kilopascal)
correspond to a fully developed flow region where the input shadowgraph
changed very slowly, if at all, with pressure. This region showed strong, stable,
oblique shock waves originating from the nozzle exit. The operator has reported
sensing shadowgraph contrast changes as inlet pressure was increased in the fully
developed flow region. But the feedforward nets are not especially sensitive to
contrast or brightness changes as has been reported before.? Hence, the inability
of the nets to estimate sensor values from shadowgraph patterns at the higher
pressures is also understandable.

Part of the sequence of training images used to train the image-to-image
sequencer has already been shown in Fig. 7. The image-to-image net learned
this sequence very well at plenum pressures greater than 9 psia (131
kilopascal). The top row of Fig. 10 shows these training outputs again, and the
bottom row of Fig. 10 shows the corresponding net generated images. Referring
to Table I, the images correspond left-to-right to the transitions for training state
numbers 6, 7, 8, and 9.
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Figure 11 shows the performance of the image-to-image sequencer for
some of the test images. The top row shows the actual shadowgraph images,
and the bottom row shows the corresponding net generated images. Keep in
mind that the shadowgraph patterns are quite sensitive to changes in the sensor
values and the valve settings. There are no identical transitions in Tables I and
II. The training images cover the space of possible images quite sparsely. And
the dirt patterns on the windows differ between the training and test runs.
Referring to Table II, the images correspond left-to-right to the transitions for
test state numbers 5, 6, 7, and 8.

Figure 12 shows the performance of the sensor-to-sensor sequencer. The
current and next sensor values in Tables I and II are complete input-output
training and test records, respectively, for this sequencer. The training
performance in the upper row is not perfect, but the test performance in the
lower row is comparable, at least when compared with the performances of the
image trained nets. The sensor-to-sensor net was definitely able to learn by
example that the ratio of sensor values is an approximate invariant; the net
functions even in the unstable flow region and to some extent in the fully
developed flow region.

CONCLUDING REMARKS

Figures 8-12 show that a tunnel operator can train by example artificial
neural networks to estimate the next operating state of a tunnel, but the process
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is by no means straightforward. The operator’s intuition and personal anecdotes
have little value in designing the process. First, one must identify exactly the
sensor and flow visualization data that the operator uses in controlling
operations. The operator of the supersonic wind tunnel clearly used very few
sensors while operating the tunnel to generate the training sets for this paper.
Nevertheless, as stated, the neural nets could not learn to estimate the few raw
sensor readings. Products of sensor readings were required to train the nets
successfully. This effect was recognized some time ago by Yoh-Han Pao and is
the rational behind his proprietary functional link net.”? The tunnel operator
evidently was able to work with individual sensors without consciously
assembling the readings into invariants. The standard feedforward nets were not
able to learn from this example. The conclusion is that preprocessing with an
assembling algorithm is required. An alternative is to have good constraining
models which indicate the invariants or approximate invariants for training the
nets.

Flow visualization images were also used successfully to estimate the
next sensor values to be set. The sensor values again must be preassembled into
the proper products and quotients for successful training. The procedures for
handling the flow visualization images themselves require more development.
There are interesting and useful questions to be answered. Are there simple
preprocessing steps, akin to selecting sensor invariants for example, that would
improve training? Can model generated images be used for training? One

23.



indication that model generated images might be very effective is that
feedforward nets show low contrast sensitivity. The consequence is that model
images, not differing much from line drawings, might be suitable for training
artificial neural networks for tunnel control. The nets trained with these model
images might not be affected by the variations in brightness, the variations in
contrast, the addition of noise, or the blurring of edges found in real flow
visualization images. The availability of good tunnel models would again help.

The overall project for testing neural net control of wind tunnel
operations has resulted in some good suggestions for introducing, evaluating and
managing automation of wind tunnel operations. The fast parallel processing
workstation is to be used essentially as a slave module. In effect, the
workstation maps the current state of the tunnel onto the next state of the tunnel
and deposits the results in a file. The tunnel control system simply picks up and
uses the results when ready. As mentioned, the SGI to Modicon interface is
being developed with this protocol in mind. The protocol allows different
approaches to automation to be tested in any facility while minimizing
interruption of the facility’s operations or disturbances of the facility’s
configurations.

The artificial neural networks can measure the effectiveness and
consistency of utilization of the tunnel’s resources. The tests performed in
connection with this project isolated the few sensor values actually used to
control the operation of the tunnel. Anecdotal claims of relationships between
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sensor values, flow visualization features, responses of controls, effectiveness of
models and tunnel operations are suspicious when the neural nets are unable to

learn these relationships.

REFERENCES

1) Decker, A., and Buggele, A., "Wind Tunnel Operations Using Archival
Flow Visualization Records and Artificial Neural Networks," AIAA Paper
94-0390, Jan. 1994.

2) Buggele, A. E., and Decker, A. J., "Control of Wind Tunnel
Operations Using Neural Net Interpretation of Flow Visualization Records,"
NASA TM 106683, Aug. 1994.

3) MODICON, vended by MODICON AEG, 1 High St., North Andover,
MA 01845.

4) Brinich, P. F., "Boundary-Layer Measurements in 3.84- By 10-Inch
Supersonic Channel," NACA Technical Note 2203, Oct. 1950.

5) Crimson XS24 Workstation and VideoFramer, vended by Silicon
Graphics, Inc., 2011 N. Shoreline Boulevard, Mountain View, CA 94043.

6) COHU Model 4815 Solid-State Monochrome CCD Camera, vended by
COHU, Inc., 5755 Kearny Villa Road, San Diego, CA 92123,

7) NeuralWorks Professional II/PLUS, vended by NeuralWare, Inc., Penn

Center West, Building IV, Pittsburgh, PA 15276.

25.



8) Rumelhart, D. E., McClelland, J. L., and the PDP Research Group,
Parallel Distributed Processing--Explorations in the Microstructure of Cognition,
Volume 1: Foundations, MIT Press, Cambridge, Mass., 1986.

9) Pao, Y-H., Adaptive Pattern Recognition and Neural Networks,
Addison-Wesley, New York, 1989.

10) Proceedings of the Second Workshop on Neural Networks:
AcademiclIndustriallNASA/Defense, The Society for Computer Simulation, San
Diego, 1991.

11) Proceedings of the Third Workshop on Neural Networks:
Academic/Industrial/NASA/Defense, The Society for Computer Simulation, San
Diego, 1992.

12) Reference 8, pp. 197-222.

26.



Table I. Sensor Outputs (Training)

Current Next
State P, (MN,)*P, Ratio | (MN,)?P, Ratio

psi psi r psi psi r
1 7.73 2.60 0.337 8.98 3.34 0.372
2 8.98 3.34 0.372 9.80 3.83 0.391
3 9.80 3.83 0.391 10.49 4.67 0.445
4 10.49 4.67 0.445 11.76 4.74 0.403
5 11.76 4.74 0.403 12.79 4.93 0.385
6 12.79 4.93 0.385 13.92 4.98 0.358
7 13.92 4.98 0.358 15.11 5.32 0.352
8 15.11 532 0.352 16.44 5.93 0.361
9 16.44 593 0.361 19.15 6.87 0.359
10 19.15 6.87 0.359 22.09 8.06 0.365
11 22.09 8.06 0.365 26.84 9.95 0.371

P, is the static inlet pressure.

P, is a static test section pressure. .

MN, is the mach number downstream of the shadowgraph.
r is the ratio (MN,)’Py/P,.




Table II. Sensor Outputs (Test)

Current Next
State P, (MN,)*P, Ratio P, (MN,)P, Ratio

psi psi r psi psi r
1 6.26 3.14 0.502 8.29 343 0.414
2 8.29 343 0.414 9.30 3.79 0.408
3 9.30 3.79 0.408 10.36 3.87 0.374
4 10.36 3.87 0.374 11.36 3.98 0.350
5 11.36 3.98 0.350 12.53 4.26 0.340
6 12,53 4.26 0.340 13.47 4.73 0.351
7 13.47 4.73 0.351 14.29 5.08 0.355 |
8 14.29 5.08 0.355 18.25 6.33 0.347
9 18.25 6.33 0.347 19.45 6.76 0.348
10 19.45 6.76 0.348 20.50 7.13 0.348
11 20.50 7.13 0.348 22.30 7.95 0.356
12 22.30 7.95 0.356 2341 7.69 0.328 ||

P, is the static inlet pressure.

P, is a static test section pressure.

MN, is the mach number downstream of the shadowgraph.
r is the ratio (MN,)’P,/P,.



FIGURE CAPTIONS

Fig. 1 1946 configuration of wind tunnel.*

Fig. 2 Modernized mach 2 configuration of wind tunnel.
Fig. 3 Schematic of 1994 configuration of tunnel services.
Fig. 4 Tunnel components and shadowgraph field.

Fig. 5 Flow of information handling and control.

Fig. 6 Feedforward neural network. Connections shown for one input and
one output node.

Fig. 7 Part of a sequence of raw (top row) and processed (bottom row)
shadowgraph patterns from the image controlled run. The flow is from
right to left.

Fig. 8 Performance of image-to-sensor neural network in predicting current
sensor outputs. Top row shows response to training images; bottom row
shows response to test images. Lines represent measured outputs; dots
represent net generated outputs. State numbers are from Tables I and II.

Fig. 9 Performance of image-to-sensor neural network as sequencer for
predicting next sensor outputs. Top row shows response to training images;
bottom row shows response to test images.

Fig. 10 Performance of image-to-image neural network as sequencer for
predicting next shadowgraph pattern. Top row shows actual training
shadowgraph patterns; bottom row shows corresponding net generated
patterns.

Fig 11 Performance of image-to-image neural network as sequencer for
predicting next shadowgraph pattern. Top row shows actual test
shadowgraph patterns; bottom row shows corresponding net generated
patterns.

Fig. 12 Performance of sensor-to-sensor neural network as sequencer. Top
row shows performance for training records; bottom row shows
performance for test records.
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